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Abstract-The approximate Ilyushin yield surface is widely used in structural calculations to rep­
resent full plasticity in stress-resultant space. The exact version of the surface has not been used,
because the parametric form in which it was described by Ilyushin was not amenable to calculation,
This paper presents a reparametrization of the Ilyushin yield criterion for thin plates which produces
a simpler (though still exact) form which is suitable for use in practical formulations, A method is
outlined by which the exact Ilyushin yield criterion can be used in such calculations, without
the need to use approximate yield functions. A method for calculating positions on the surface
corresponding to a linear multiple of any set of stress-resultants is presented. Various features of
the exact yield surface are described.
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yield function in stress space (von Mises')
non-dimensional flexural stress resultant components
non-dimensional in-plane stress resultant components
non-dimensional position through thickness of plate
arbitrary constants
yield function in stress resultant space
components of normal to yield surface
through-thickness integrals [eqn (20»)
through-thickness integrals [eqns (25) and (30)]
quadratic strain intensities
quadratic stress resultants (not on the yield surface)
quadratic stress resultant, on the yield surface
Young's modulus
fundamental parameter of the present formulation
initial estimates of cx, p and y
mid-plane strain components
non-dimensional curvature components
fundamental parameter of Ilyushin's formulation
plastic strain rate multiplier
multiplier relating given set of Qi to the yield surface [eqn (45)]
initial estimate of '1 [eqn (51)]
derived parameter of Ilyushin's formulation [eqn (8)]
stresses (dimensional)
uniaxial yield stress,

INTRODUCTION

For many years, research has been carried out to determine the collapse loads and collapse
modes of steel-plated structures, spurred on by the failure of box girder bridges and major
developments in the offshore industry. More recently, studies of the behaviour of aircraft
and motor vehicles in crash simulations have also been carried out.

Because of the necessity of producing results for these problems as quickly as possible,
some simplifications were made in the analyses. These approximations were assumed to
have little effect on the theoretical solutions, and good correlations have been found between
theory and experiment.
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However, it is not always necessary to make all of these simplifications. This paper
shows how the Ilyushin Yield Surface can be used in practical calculations without the need
to introduce the usual approximations.

SINGLE LAYER APPROXIMATIONS

In order to determine the maximum collapse load of a plate, a criterion is needed to
assess when the plate reaches a situation where the behaviour is governed by plasticity.
Two approaches have been identified. It is possible to work either in terms of stresses which
vary through the thickness of the plate (Moxham, 1971; Little, 1977; Harding et al., 1977),
in which case a yield criterion such as von Mises' is used, or in terms of stress resultants
(Crisfield, 1973; Frieze, 1975), when a more complex full plasticity yield surface is needed.
The arguments for doing one or the other have been rehearsed elsewhere (Crisfield, 1973;
Bradfield, 1982), but may be summarized briefly as a trade-off between accuracy at the
expense of large computer resources when using a stress formulation, and reduced com­
putation but less accuracy when dealing with stress resultants. Both approaches are useful,
and each can be worthwhile in different circumstances.

When dealing with stress resultants, it is, of course, important to be able to identify a
yield surface, which marks the limiting values of the stress resultants, beyond which the
plate may not be loaded. The vast majority of the work carried out in this field (Bieniek
and Funaro, 1976; Eggers and Kroplin, 1978; Dinis and Owen, 1982; Trueb, 1983) has
utilized what was usually referred to as the "Ilyushin yield surface", although in reality, the
yield surface was only an approximation to the exact surface derived by Ilyushin.

Ilyushin (1948) derived an exact form of the yield surface for a linear elastic, perfectly
plastic isotropic material which obeys von Mises' yield criterion; this will be referred to as
the "Exact Ilyushin Yield Surface" to distinguish it from the approximate form mentioned
above. Given the complete absence of computing power at the time, it was of purely
academic interest.

Ilyushin published his work in French (Ilyushin, 1956), but an English version of his
work was not available until it was translated by Crisfield (1974). The notation used in this
paper will follow, where appropriate, the notation of Crisfield's translation, in common
with most references to this subject.

Consider a plate of thickness t. The through thickness coordinates are measured from
the mid-surface by a dimension (s), although it will be more convenient to define a non­
dimensional coordinate z (=s/t). In-plane stresses (o"x, O"y, O"xy) occur through the plate, and
non-dimensional stress resultants are defined by:

I fl /2 4 fl /2
nx = - o"x dz and mx = - o"x dz,

0"0 ~1/2 0"0 ~1/2

with similar expressions for nV' n ty , my and mxy .
The material is assumed to obey von Mises' yield criterion:

f = (0";-O"xO"y~0";+30";y) = 1.
0"0

It will then be convenient to define quadratic stress intensities Qt, Qm and Q,m as:

Qt = n; +n; - nxny+3n;y,

Q,m = mxnx+myny- ~(mXny+mynx)+3mxynxy,

Qm = m; + m; - mxmy+ 3m;yo

(I)

.(2)

(3)

Non-dimensionalized mid-plane strains (Ex, BV' Exy) and curvatures (Kx, Ky, Kxy ) are defined
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(and will be referred to as strain resultants), and there will be corresponding non-dimen­
sional strains at each level defined by

(4)

If the plate is elastic at depth z, the ax stress at that depth is given by

(5)

with similar expressions for ay and axy ' (The true "engineering" strains and curvatures are
given by exao(1- y2)jSand Kx4ao(1- y2)j(St) respectively, where S is Young's modulus.)

Corresponding to the quadratic stress intensities, quadratic strain intensities can also
be defined:

P, = de~ + de; + dex dey + 0.25 de~y,

PeK = 4(dex dKx+ Hdex dKy+dey dKJ+dey dKy+0.25 dexy dKxy),

PK = 16(dK~+dK;+dKxdKy+0.25dK~y). (6)

ILYUSHIN'S DERIVATION

There are six stress resultants for any element of the plate, nx, ny, nxy , mx, my and mxY'
so the yield surface will be a function of five parameters. By considering the three non­
dimensional quadratic stress intensities, Qt, Qm and Qtm, the surface can be reduced to a
surface in a 3-dimensional space, and can thus be represented by two independent
parameters. Ilyushin (1948) represented the surface in terms of two non-dimensional par­
ameters ( and J1 [the physical significance of which will be given later in eqn (22)]. The
derivation can be found in Crisfield (1974), and the resulting equations summarized as:

1 2 2 2
Qt = M (J1 ljJ +¢ ),

Qtm = :~ (J1 2AljJ2+A¢2+ J1 2¢ljJ+¢X),

4
Qm = Ai (J12ljJ2(J12+A 2) +¢2(4J12 +,1.2) + 2J12A¢ljJ -2J12ljJx + 2A¢X +X2), (7)

where

¢ = (-1,

I
(I+JI-J12) ((+J(2_ J1 2)/

ljJ = 10& ±lo& ,
J1 J1

X = 1~±(J(2_J121,

Al = ~±J(2_J12,
1_(2

A=~, (8)
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subject to the conditions that

o~ J1 ~ 1,

J1~'~1. (9)

(Note that Ilyushin actually used (2) instead of (0 written here; this has been changed to
avoid confusion with the plastic strain rate multiplier which is conventionally also rep­
resented by 2, and which will be needed below.)

The surface is bounded by the condition that

(10)

which corresponds to J1 = O. This is derived from the Schwarz inequality which states that

lal'Jbl :?: la' bl, (11)

where a and b are vectors. If a is taken as (nx O.5np ~3/2ny, ~3nxy), and b taken as the
corresponding moment terms, inequality (10) results.

Figures 1 and 2 show perspective views of the surface, plotted in Qt, Qm, Q,m space,
with lines of constant Q" Qm and Q,m shown. There is a discontinuity in slope which is
shown more clearly in Fig. 2. The plot is symmetrical about the plane Qtm = 0, and could
also be plotted without loss ofclarity as Q,m against Q, - Qm, since there are no folds of the
surface or hidden views in such a plot. One half of the surface will be shown in this way in
some of the subsequent figures.

In his original paper, Ilyushin proposed an approximation to his exact surface, and it
is this approximation to which most authors refer when discussing the Ilyushin Yield
Surface:

(12)

This is a very crude approximation (Fig. 3), consisting simply of two planes in Q-space.
The discontinuity this introduces at the line of symmetry Qtm = 0 has been a major cause
of problems when using the surface, not so much for the error in the position of the surface,
but because it produces a discontinuity in the normal to the surface and consequently also
in the plate rigidities calculated from the normal direction.

Various other approximations have been made to the exact Ilyushin surface, and these
are discussed in some detail by Robinson (1971). This work was discussed by one of the

Edge of surfoce (0,0. = 0..')
line of symmetry (0.. = 0)
0.. constont (intervols of 0.05)
Q. constant (intervals of 0.1)
Q, constant (intervals of 0.1)

Fig. 1. Three-dimensional view of exact Ilyushin Yield Surface.
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Edge of surface (0,0. - 0..')
Line af symmetry (0.. - 0)
0.. constant (intervals of 0.05)
O. constant (intervols of 0.1)
0, constont (intervals of 0.1)

Fig. 2. Three-dimensional view of surface showing slope discontinuity.

---------- 0, constont (both surfaces)
Approximote yield surface (thick lines)
Exoct yield surface (thin lines)

Fig. 3. Exact and approximate Ilyushin Yield Surfaces.
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present authors (Burgoyne, 1979), and one of the alternative yield surfaces, that due to
Ivanov (1967), has been used subsequently in numerical studies of plate buckling problems
(Crisfield, 1979). Ivanov uses a quadratic representation of the yield surface in Q-space, as
opposed to the linear representation of the approximate Ilyushin yield surface:
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(13)

The last term on the left-hand side is sometimes omitted, giving a less accurate approxi­
mation but one which is easier to use in certain circumstances. Ivanov's surface overcomes
many of the difficulties associated with the approximate Ilyushin yield surface; it has no
discontinuities except one in slope at Q, = I where the exact surface also has a slope
discontinuity, and always lies within 1% of the exact surface. Nonetheless, buckling prob­
lems are sensitive to changes in the elasto-plastic rigidities, which are, of course, derived
from the normal to the surface. Thus, any error in location of the surface will be reflected
in a larger error in the normal, and hence in the rigidities. It is thus worthwhile considering
whether the exact surface itself can be used as the basis of a more accurate calculation.

REPARAMETRIZATION OF THE YIELD SURFACE

Ilyushin's choice of the two independent parameters ( and J1. makes it necessary to
divide the surface into four regions before a solution can be obtained. The surface is
governed by different equations on each side of the plane of symmetry, and within each
half of the surface two areas have to be identified, known as the "in-plane dominant" and
"bending dominant" regions. [The different equations arise by taking the alternative signs
for the ± terms in eqns (8).] Figure 4 shows lines of constant ( and J1. for one half of the
surface, and Fig. 5 shows a detail of one of the "in-plane dominant" regions. It is clear that
even without the problem of the different regions, a solution based on ( and J1. would not
form a suitable basis for use in a plate analysis program, since lines of constant ( are
virtually parallel to lines of constant J1. in many cases. In these regions, equations set up in
terms of ( and J1. would be ill-conditioned and numerically unstable.

( and J1. are not the only two parameters that could be used. It is feasible to derive
expressions to define the surface in terms of other parameters, following a derivation that
is similar to Ilyushin's.
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Fig. 5. In-plane dominant region constructed in terms of Ilyushin's original parameters" IJ..

Consider incremental strain resultants dBx , dB v and dBxv' and dKx , dK v and dKxv ' In the
limit, these strain increments will be wholly plastic; and thus normal to the von Mises stress
yield surface, fixing the position on the yield surface and hence the stresses at any depth
within the plate. This assumption about the relative magnitudes of the elastic and plastic
strain components will be significant when discussing the normality law in a companion
paper (Burgoyne and Brennan, 1993).

The strain increment vector is defined by the normality law in stress space

of
dex = dA.~,

v(Jx

of
dey = dA.~,

v(Jy

of
dexy = dA.-;:\-,

V(Jxy
(14)

where dA. is the plastic strain rate multiplier. Then,

[ :::] = ~~[- ~
dexy 0

which may be readily inverted to give

1[(Jx] 1[2
(Jo (Jy = 3dA. 1

(Jxy 0

- ~ ~][::],
o 6 (Jxy

1 O][de
x

]2 0 dey'
o 0.5 dexy

(15)

(16)

The unknown multiplier dA. can be obtained by substituting the above stress terms into the
von Mises equation (2) to give

(17)
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which can also be written as
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(18)

The stresses may then be integrated over the plate thickness to get the stress resultants,
giving

nx 210 Jo 0 8J1 4J1 0 dex
ny Jo 210 0 4J1 8J1 0 dey

nxy 0 0 Jo/2 0 0 21 l dexy
mx 8Jl 4J1 0 32J2 16J2 0 dKx

,

my 4J1 8Jl 0 16J2 3212 0 dKy
mxy 0 0 21 l 0 0 8J2 dKxy

where the J j are the integrals

1 fl/2 i
J

j = J3 -l/2jPe+2PeKZ+PKZ2 "dz.

(19)

(20)

This set of six equations can be reduced to three by using quadratic forms of the stress and
strain quantities:

(21)

At this point, the present analysis diverges from that of Ilyushin, since he introduced the
non-dimensional parameters:

(22)

Instead, the parameters

(23)

are defined. [It is convenient to use the negative sign in the definition of p, since p then has
the physical meaning of being the position within the thickness of the plate where the
equivalent strain rate increment, dA. in eqns (17) and (18), is a minimum.]

With these substitutions, the stress intensities can be expressed as

(24)
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where

f
l / 2 Zi

Ki = 'dz = J3PK ·Ji •
-1/2 ja-2pz+z2

The integrals can be performed analytically, giving

1121

(25)

I
I

j a- p+0.25+(0.5- P) I
Ko = og., ,

j a+P+0.25 - (0.5 +P)
K I = ja-p+0.25-ja+p+0.25+PKo,

2K2 = (0.5+mja-p+0.25+(0.5-p)ja+p+0.25+2pK I -(a-p2)Ko. (26)

Ilyushin's parameters may be derived from those used here by the substitutions:

= (a - P+0.25)1/
2

, a+p+0.25 '

(
a_p2 )1/2

Jl = a+p+0.25
(27)

Figure 6 shows the yield surface with lines of constant a and lines of constant p.
In practice, it will also be useful to refer to a third parameter y, which is not independent

of a and p, but is given by

Equations (24) can then be rewritten:

(28)

.24

.1

.0

Qt = (PKo-KI )2+ yK5,

Qtm = 4(PKo-KI)(PKI-K2)+4yKoKIo

Qm = 16(PK1-K2)2+16yKf,

Edge line (0 - fI")
lin.. of constant ,
lines of constant a

Fig. 6. Yield surface constructed in terms of ex and p.

(29)
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Fig. 7. Yield surface constructed in terms of f3 and y.

and eqns (26) become

1 I
j(0.5-rW+y+(0.5-P)1

K o = oge ,
j(0.5+ P)2 +Y- (0.5+P)

K 1 = j(0.5-{J)2+ y_j(0.5+{J)2+ y+{JKo,

2K2 = (0.5+{3)j(0.5-P)2+ y+(0.5-P)j(0.5+P)2+ y+2PK I -yKo, (30)
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!975
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Fig. 8. Region corresponding to Ilyushin's in-plane dominant region. p, y parametric plot.
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subject to the limits
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o~ p2 ~ rx ~ 00,

o~ y ~ 00.

1123

(31)

Figure 7 shows lines of constant p and y, while Fig. 8 shows a detail of the region for
high QI (corresponding to the "in-plane dominant region" in Ilyushin's terms).

This representation in terms of pand y is the most convenient to use in calculations,
since nowhere on the surface do lines of constant values of the two parameters become
parallel, unlike representations involving rx.

The same equations apply in all four regions identified by Ilyushin. The line ofsymmetry
corresponds to the line p= 0, while the boundaries between the "in-plane dominant" and
"bending dominant" regions are given by p = ±0.5. The extreme edge of the surface is
given by y = o.

NORMAL DIRECTION TO THE ILYUSHIN YIELD SURFACE

To make full use of the surface in its new parametrized form, it must be possible to
define the direction of the normal to the surface.

If the yield surface is defined in terms of a yield function F such that

(32)

By considering infinitesimally adjacent points on the yield surface, a tangential plane can
be defined in terms of the generating parameters pand y. The normal direction to this plane
is found, and after some manipulation can be expressed as

of
FI = OQI = C(16K2),

of
F tm = oQ = C( -8K]),

1m

of
Fm = oQm = C(Ko), (33)

where C is a constant defining the magnitude of the normal vector.
The surface has been defined using an incremental theory of plasticity, in which the

elastic strain resultant increments are negligible by comparison with the plastic components.
Equations (19) thus represent expressions for the stress resultants in terms of the strain
resultant increments; in the steady state, these must be the plastic strain resultant
increments.

The J; in eqn (19) are related to the K; by eqn (25). With this substitution the resulting
6 x 6 matrix can be inverted analytically to give an expression for the plastic strain increment
vector in terms of the loads applied to the plate:

dsx 32K2 -16K2 0 -8KI 4K] 0 nx
dsy -16K2 32K2 0 4K] -8KI 0 ny
dsxy fiP; 0 0 96K2 0 0 -24KI nxy
dKx

=
48(KoK 2 -KD -8KI 4KI 0 2Ko -Ko 0 mx

dKy 4K] -8KI 0 -Ko 2Ko 0 my
dKxy 0 0 -24KI 0 0 6Ko mxy

(34)
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If the K; integrals in eqn (34) are replaced by the appropriate derivatives of F from eqns
(33), then it may be seen that the right-hand side of eqn (34) is the normal vector to the
Ilyushin yield surface in stress resultant space:

where

dex

dey

dexy
dKx

dKy

dKxy

fJF/&n,
of/ony
of/onxy
of/omx
of/omy

of/omxy

(35)

(36)

may be shown to be a positive non-zero quantity. Thus, the normality law is shown to hold
in stress resultant space.

DESCRIPTION OF THE EXACT YIELD SURFACE

The yield surface is symmetrical about the line Q,m = 0, and bounded by the edges
given by the Schwarz inequality QtQm ::;; Q,~. It contains a discontinuity in slope at the
point Q, = I, Qm = 0, Qtm = 0, but is smooth elsewhere. Three particular lines can be
identified and are worth further discussion.

(i) Boundary curve (Q,Qm = Q;",)
The boundary curve is given by the line y = 0, and substituting this value into eqns

(30) gives

K o = 00,

K 1 = -2{3+fJKo,

K 2 = 0.25 - 3{32 +{32K o. (37)

By putting these values into eqns (29), the infinite values for K ocancel and simple parametric
expressions for the boundary curve can be obtained:

Q,=4{32,

Qtm = - 2{3(1- 4fJ2),

Qm = (1-4{32)2. (38)

These equations are subject to the limit - 0.5 ::;; {3 ::;; 0.5. The maximum value of Qtm occurs
when fJ = ± 1/-J12, whence Qt = 1/3 (=0.333333), Qtm = ±2/3.J3 (=0.384900) and
Qm = 4/9 (=0.444444).
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The normal to the surface along the boundary has to be found from eqns (33), taking
account of the values of K j derived above. Ko is infinite, so the expressions for the other K j

become dominated by the Ko term, to give

(39)

The infinities then become included in the constant multiplier, to give

(ii) Line ofsymmetry (Qtm = 0)
Along the curve of symmetry f3 = 0 and the curve is defined by

Qt = yK~, Qtm = 0, Qm = 16K~,

where

I I
JO.25+Y+0.51

K o = og" ,
JO.25+y-0.5

K 2 = 0.5(JO.25+y-yKo).

(40)

(41)

(42)

The two end points of the symmetry line are important. When y = 0, which corresponds to
pure bending of the plate,

Qt = 0, Qtm = 0, Qm = I,

Ft = 0, Ftm = 0, Fm = I. (43)

These are the same as the values obtained by putting f3 = 0 into the expression for the
normals to the edge line [eqn (40)] indicating that there is no discontinuity at this extreme
edge of the yield surface.

However, when y = 00, where the edge lines again meet the line of symmetry at the
point corresponding to purely axial loading,

Qtm = 0, Qm = 0,

Ft = 0.8, Ftm = 0, Fm = 0.6. (44)

These values for the normal direction differ from those obtained by putting f3 = ±0.5 into
the equivalent expressions for the edge lines, indicating that there is a discontinuity of slope
at this limiting point.

(iii) The lines f3 = ±0.5
The lines corresponding to f3 = ±0.5 are very significant in Ilyushin's original deri­

vation, since they represent the boundary between the "in-plane dominant" and "bending
dominant" regions; different equations were used to define the surface in the two regions.
In the present formulation, these lines do not have special significance, other than repre­
senting the first of the values of f3 that form closed loops on the surface.

Physically, f3 represents the position within the thickness of the plate (given by the
value of z) at which the equivalent strain increment intensity is a minimum. When the
magnitude of f3 exceeds 0.5, there is no minimum within the section, so that in-plane forces
predominate and overcome the tendency of the bending moments to cause a reversal of
stress between the top and bottom surfaces.

$AS 3Chl-H
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DETERMINATION OF GENERAL POINTS ON THE YIELD SURFACE

The object of the reparametrization of the Ilyushin Yield surface is to allow the use of
the exact surface in structural calculations. Thus, it must be demonstrated that the position
of points on the surface can be calculated, as can the normal direction at those points.

Equations (29) and (30) define the full yield surface in terms of the new parameters {3
and y. These are a set of non-linear equations which are not amenable to analytical solution;
instead, a Newton-Raphson numerical procedure is adopted.

A number of potential problems could be tackled; for example, fixing two of the Qi
and calculating the third, but the most general question that will arise when solving plate
problems is to take a set of known stress resultants and find the multiplier needed to put
all the stress resultants onto the yield surface.

Thus, consider some point Q I, Q12' Q2 in Q space that does not lie on the yield surface;
it is desired to find the values {3, y and '1 for the corresponding point on the yield surface,
such that

Qt({3,y) = '1Q"

Q,m({3,y) = '1QI2'

Qm({3, y) = '1Q2' (45)

If estimates of {3, y and '1 are known, changes of these quantities can be found, using
Newton's method, from

oQ, oQ,
QI

013 oy

oQ,m oQtm [ AP] [qQ, - Q, ]
0{3 oy Q'2 Lly = '112-Qtm . (46)

oQm oQm
-Ll'1 '1Q2 - Qm

0{3 oy Q2

Convergence will have occurred when the right-hand side of these equations becomes
tolerably small.

The rate of convergence for such problems depends on both the degree ofconditioning
of these equations, and the accuracy of the initial estimate of the solution. As can be seen
from Figs 7 and 8, the parameters {3 and yare almost orthogonal for values of Q, - Qm close
to -I, but as Q,- Qm increases, the angle between the {3 and y curves decreases until they
become almost parallel near the singularity point (Q, = I, Qm = 0, Q,m = 0), and hence ill­
conditioned. Nevertheless, after studying plots of all combinations of IY., {3 and y, it was
decided that the 13 - y combination offered the best conditioning over most of the region,
and it has been found possible in practice to determine points on the surface using this
combination right up to the singularity point (although with considerably more iterations
for the ill-conditioned region).

The choice of starting point is almost always critical when using Newton's method,
and is particularly so when dealing with ill-conditioned equations. Furthermore, since any
solution routine that is used in practice is likely to be buried deep within a finite element
program, an initial estimate is required that can be derived ab initio and does not depend
on the values obtained in a previous solution.

An efficient and accurate starting value routine can be established by making use of
the properties of the Ilyushin yield surface and the Ivanov approximation to it. Equations
(33) can be used to relate the yield surface parameters to the direction of the normal to the
yield surface. It is then possible to find the normal direction to the Ivanov approximate
yield surface at the point in question and use this to find estimates of the starting parameters
for the Newton-Raphson iteration.
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Thus, by substituting eqns (33) into eqn (24), a relationship between the normals to
the surface and the parameters IX and /3 is obtained:

-FtmFm/8
(4Ftm Fm+F;;,,)/32

-F,F,m/8

(47)

where C I is an arbitrary constant.
Ivanov's approximate yield function [eqn (13)] can be differentiated to give approxi­

mate values for the Fi derivatives:

(48)

where C z is another arbitrary constant.
Ivanov's approximation is of the form

(49)

and, since it is of order 1 in terms of the Qj, it follows that

(50)

It is also known (Robinson, 1971) that Ivanov's yield surface is within 1% ofthe true value,
so a reasonable starting value for 11 is given by

1
110 = ----------------

Q, +QzI2+JQ~/4+Qfz-~ (g:~~~;J:)
(51)

Equations (47) now give three linear equations in the three unknowns IX, /3 and C
(=C,C~/11); all other terms may be expressed in terms of the known quantities Q" QIZ
and Qz. They may be further reduced to two equations in IX and /3, since the value of C is
not needed, which can then be solved for the initial values 1X 0, /30 and hence Yo.

(52)

where

all = 64QZ(o~J -16QI (/:IZJ.

of of· of of
al2 = 16Qz oQ,z . oQz -16QI OQI . oQ,z'
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(53)

(54)

This algorithm predicts the correct sign of Po and a value of Po = 0 when QI2 O. It also
correctly predicts that Yo = 0 for Q I Q2 = Q i 2 and the correct value of Palong this bound­
ary. At the singular point (1,0,0), the Ivanov normals cannot be calculated, so no values
are forthcoming for this case; this must be treated as a special case in any computer
application of the method.

The method requires knowledge [in eqns (46)] of the derivatives of the Qi with respect
to Pand y. In areas where the equations are well conditioned, these are often obtained
sufficiently accurately, and more conveniently, by numerical differentiation. However, they
are often required to be more accurate, and can be obtained analytically from the chain
rule.

To summarize the procedure:

(1) for a known set of (Q" QI2, Q2);
(2) find derivatives to Ivanov's yield surface from (33) ;
(3) find 110 from (35) ;
(4) find (xo, Po and Yo from (36), (37) and (38) ;
(5) differentiate (16) and (17) with respect to Pand y;
(6) substitute into (31), and solve for changes in P, y and 11;
(7) repeat (5) and (6) until convergence occurs. In well conditioned regions, it is

usually unnecessary to refine the estimates of the derivatives in (5), so this step only needs
to be carried out once.

This procedure will converge for all points on the exact yield surface, except for points
immediately adjacent to the singularity point (1,0,0). In most cases, only two iterations
are required, but for values of Q,-Qm approximately 0.9999, about 15 iterations may be
required, and it will probably be necessary to employ a computer model that uses double
precision for the inner loop of the Newton-Raphson iterations.

Since this process converges so quickly, it can be used as the core of other procedures.
For example, the lines of constant Q; drawn on Fig. I were obtained by specifying two of
(Q" Q,m, Qm) and allowing the third to vary. An outer Newton-Raphson loop was con­
structed which varied the starting values of (Ql> QI2, Q2) until the resulting points on the
yield surface had the required fixed values.

VISUALIZATION OF NORMAL TO YIELD SURFACE

It was shown above that there is a discontinuity in the slope of the yield surface when
the plate is subject to purely in-plane forces. Although there is no discontinuity elsewhere,
there is a "lip" on the surface along the edge Q,Qm = Q;"'.
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Fig. 9. Components of normal to yield surface along Q, = Qm'

Figure 9 shows the three components of the unit normal to the yield surface along a
line on the surface corresponding to Qt = Qm, with Qtm varying from 0 to the maximum
value at the edge (Qtm(max»)' The components on the edge are given by eqns (40), which rely
on y being zero, and hence K obeing infinite. Elsewhere, the components of the normal are
given by eqns (33), using values of K j from eqns (30). Although these equations give the
same values on the edge, it is clear from the figure that there is a sudden change in the
direction to the normal immediately adjacent to the edge of the surface. It is possible to
follow this sudden change in the normal direction using eqns (30), but special procedures
have to be adopted which allow the denominator in the expression for Ko to be very small.
This can be done by assuming y is very small and using the binomial expansion to simplify
the calculation. This leads to

(55)

which can be evaluated provided logarithms of small numbers can be calculated.
The corollary of this observation is that there must be a small lip on the yield surface

at the edge. It is not possible to see this lip on the surface, unless sections are taken and
magnified by several orders of magnitude. The lip is present all along the edge, except at
the pure bending point, where the normal on the edge and the normal to the line ofsymmetry
coincide, as discussed above. Figure 10 shows a three-dimensional view of the surface; the
short straight lines represent normals to the surface. These are shown along radial sections
which all pass through the Qt = 0, Qm = 0 axis. Also shown are normals to the edge line
and normals to the line ofy = 0.00001, which is effectively immediately adjacent to the edge
line. The true discontinuity in the surface occurs for purely in-plane loading.

This observation is of some significance, since beams and axes of symmetry in plates,
are usually loaded in such a way that they would lie on this edge of the yield surface.
Calculations of the rigidities may become significant, especially in stability problems, where
small changes in stiffness will lead to large changes in the buckling load.

NUMERICAL EXAMPLE

In the companion paper (Burgoyne and Brennan, 1992), a numerical example will be
given showing the process of deriving a position on the yield surface; this will be done in
association with the method for deriving accurate elasto-plastic rigidities for a plate from
the normal direction of the exact Ilyushin yield surface.
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Apparent discontinuity
O'm ._. '-:--=ti~-- :---.:::-~ of normals at edge
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Fig. 10. Three-dimensional view showing normals to yield surface, discontinuity at one corner and
lip at the edge.

CONCLUSIONS

A method has been presented for the reparametrization of the Exact Ilyushin Yield
Surface. Detailed equations have been given from which the surface can be constructed,
and it has been shown that it is practical to determine positions on this yield surface
corresponding to a proportional increase of any given set of stress resultants, by a simple
iterative procedure. Reliable starting values for this iteration can be found which allow
convergence to take place in 2 or 3 iterations from most initial positions.

It has been shown that the normal direction to this surface can be calculated, and in
a companion paper these values will be used to determine the corresponding elasto-plastic
tangential rigidity matrix.
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